中国科大揭秘

23·7"华北极端暴雨是如何形成的?

星报讯(记者 祁琳) 2023年7月底,一场极端强 降雨突袭华北("23·7"极端降雨事件),在北京、河北等 地引发严重洪涝灾害,造成重大人员伤亡和财产损 失。这场破纪录的暴雨究竟是如何形成的?5月7日, 记者从中国科大获悉,该校大气科学先进计算实验室 赵纯教授团队通过分析,揭示了一个此前被忽视的关 键因素:蒙古高原地区近几十年异常快速的增温,对此 次华北极端降雨起到了显著的"催化"和放大作用。

研究指出,在全球变暖的大背景下,蒙古高原 地区就是一个"热点",其近几十年的增温速度达到 了全球平均水平的三倍以上,升温幅度远超周边区 域突破临界点。

远在蒙古高原的快速增温,是如何影响到数百 公里之外华北地区的这场暴雨呢? 赵纯教授团队 利用其发展的全球变分辨率大气物理化学耦合模 式,在国产神威超算支持下,精准地模拟再现了

"23·7"极端降雨过程,模拟结果在降雨落区、强度 和时空演变上都与实况观测高度吻合。

基于高精度的模拟,研究团队基于国际前沿的 "故事线"气候归因方法,通过设计对比实验,发现 在导致此次降雨极端化的诸多因素中,蒙古高原的 异常快速增温趋势扮演了关键的"幕后推手"角色。

蒙古高原上空的快速增温,像"加热器"一样,促 使该区域形成了一个异常强大且稳定的高压系统。 这个"大陆高压"发展,与西太平洋副热带高压(俗称 "副高")"手拉手"连成一体,在华北地区上空构筑 了一道坚固的"高压大坝"。这道"高压屏障"如同 拦路虎,阻碍了携带水汽的台风"杜苏芮"残余环流 继续北上或东移,将其长时间"困"在华北太行山前 区域。被拦截的水汽在太行山地形的持续抬升作 用下,被迫辐合抬升,导致降雨在狭窄区域内长时间 集中倾泻,最终酿成了破纪录的极端暴雨灾害。

" 五一" 假期,位于合 肥市肥东县桥 头集镇国光社 区的省级现代 农业产业园种 植蔬菜"不打 烊",面对市场 需求量增大的 情况,通过增 加人手、积极 采收、提前备

货等措施,让市民的"菜篮子"拎得更稳更轻松。据了解,为保 障市场需求,该产业园的专业合作社、种植户积极早谋划,抢 抓农时,全力做好各类蔬菜生产管理,合理安排蔬菜采摘量 和储备量,让"菜篮子"供应市场有保障。 汪兴 记者 赵汗青

合肥紧凑型聚变能实验装置项目总装正式启动

星报讯(记者 沈娟娟) 记者从合肥市获悉,日 前,在紧凑型聚变能实验装置(BEST)项目工程总装 启动仪式上,用于总装装配的4根长达52米的400 吨行车主梁运抵装置BEST施工现场,项目工程总 装工作正式拉开序幕,比原计划提前了两个月。

据介绍,总装工作是BEST装置建造过程中最关 键的环节之一,要将包括超导磁体系统、磁体馈线系 统、杜瓦、冷屏、包层以及偏滤器等在内的聚变堆"心 脏"部件精确安装至主机基坑内。现场装配的部件 数以万计,总重高达6000吨,精度要求高,标准严苛。

目前, 总装中首个需要落位的重要部件——杜瓦 的施工工作也进展顺利,涉及其余6个任务段的施工 准备工作正有条不紊地向前推进。"我们力争在2027 年,完成BEST项目建设。"聚变新能(安徽)有限公司董 事长说,"在全球率先实现聚变的氘氚运行放电。"

据悉,紧凑型聚变能实验装置BEST项目自启动 以来,主体工程和园区工程全面展开建设,在装置 设计优化、核心技术攻关、关键部件研制以及园区 工程建设等方面完成多个里程碑节点,有力保障了 工程总装启动节点的顺利完成。

未来,该项目将继续发挥资源配置优势,创新 机制体制,推动聚变基础研究、工程设计、项目建 设、产业布局一体化进程,为建设聚变能源高地、为 早日实现核聚变能开发应用作出更多贡献。

以案为鉴 筑牢廉洁自律防线

星报讯(记者 赵汗青 通讯员 李剑芸 许亚玲) 近日,肥 东县纪委常委、监委委员桑里鹏为合肥循环园园区全体参训 人员上了一堂精彩而又深刻的廉政党课。

桑里鹏以《学悟党纪条规规范自身言行》为主题,阐释反 腐力度越来越大的原因;之后结合六大纪律,以大量典型违 纪警示案例阐释了全面从严治党、持续推进正风反腐的必要 性和坚定决心;最后桑里鹏常委强调,园区干部要坚决做到 "三个不要"。通过此次学习,园区党员干部深受触动,纷纷 表示将以此次廉政党课为契机,自觉把纪律要求内化于心、 外化干行,将党纪学习教育的成效体现在推动工作质效提升 上,为推动园区经济社会高质量发展贡献力量。

